Exploring Solar Inverters in the Market - A Buyer's Guide

Author: Jessica

Dec. 09, 2024

Exploring Solar Inverters in the Market - A Buyer's Guide

Introduction

Solar energy offers a self-sustaining source of power, which is in the form of DC power. The question arises, how can you transform this energy into AC power to meet the industry&#;s energy requirements.

If you are looking for more details, kindly visit our website.

By using solar inverters!

Inverters are of many types and all of them share the fundamental objective of transforming the electricity generated by the solar panel system into a usable form, namely, alternating current (AC). They play a crucial role in converting the raw DC power into AC power, enabling you to power your appliances.

These essential components of rooftop solar systems are available in three primary types. This blog aims to clarify the distinctions between these three types of solar inverters and assist you in determining which one best fits your needs.

Types of Solar Inverters

There are three types of inverters which are used in solar power systems. These are available in different input capacity  options, including 12-volt DC, 48-volt DC, and even 96-volt DC.

Let us take a look at these types in a general sense. 

On-grid inverters are those directly connected to the grid whose primary function is to convert DC power into AC power. Whereas the off-grid operates independently without relying on the grid. It extracts power from the battery and converts it from DC and supplies it as AC output. 

The last type is Hybrid inverters which is compatible with off-grid and on-grid systems. 

How Do On-Grid, Off-Grid, and Hybrid Solar Inverters Differ from Each Other?

Now it is important to check the requirement of each solar inverter. Let us now explore the three types of solar inverters available in the market. 

On-Grid Inverter

The on-grid solar inverter comes equipped with an important safety feature known as Anti-Islanding Protection. The solar inverter that is connected to the power grid has a safety feature called Anti Islanding Protection. This feature enables it to disconnect the power supply from the solar panel system in the event of an electrical arc. Additionally, this inverter channels excess electricity into the utility grid through a bidirectional meter.

Off-Grid Inverter

Off-grid inverters can&#;t synchronize with the grid because they are built to operate independently. Off-grid inverters are required to rapidly convert DC electricity to AC to power the appliances.

It continues to be linked to a battery bank that stores extra solar energy produced by solar panels. The off-grid solar inverter uses stored energy from the battery bank during power interruptions, such as when solar intensity isn&#;t available at night. It then transforms the DC electricity from the battery into useful AC current and distributes it to meet the energy demands. 

Hybrid Inverter

This version of inverted can be used to store the energy and also act as a grid as when supply is needed for the industry.  These can intelligently manage power, reducing the conversion losses while DC is converted into AC. 

Microinverters

Another Classification is Microinverters, inverters that change direct current (DC) into alternating current (AC), The main thing that sets microinverters apart, from inverters is that they work at the level of panels instead of the whole solar panel system. Unlike string inverters, micro-inverters control the output of a single panel and are much safer.

Here are a few things to look for when purchasing solar inverters.

Solar Inverter Warranties

Most of the inverters typically offer warranties of 5 or 10 years, which can be further extended for up to 25 years. Additionally, when making an inverter purchase, it&#;s essential to have a clear understanding of what the warranty entails and what it does not.

You should be aware of whether the warranty covers internal malfunctions exclusively or also extends to external damage. Also, check for service centers and shipping costs associated with it.  

Solar Inverter Operating Temperatures

The operating temperature range deemed ideal for a solar inverter&#;s secure operation is always higher than the surrounding air. When the ambient temperature climbs above 32°C, a temperature differential of roughly 10&#;14°C is observed during the day. This suggests that an inverter operating at a temperature of roughly 47&#;51°C would correspond to an ambient temperature of 37°C. Because inverters naturally produce heat and operating conditions aren&#;t always ideal, a solar inverter periodically needs to work under more challenging conditions.

So it&#;s crucial to pick a solar inverter with a higher operating temperature. A higher working temperature capability of the inverter indicates that it can withstand higher heat levels, which enhances the inverter&#;s overall performance and dependability.

Solar Inverter Efficiency

Peak efficiency and weighted efficiency are generally used to describe the efficiency of solar inverters. Peak efficiency is the inverter&#;s efficiency when it performs at its best, whereas weighted efficiency takes factors such as the DC input levels into consideration. As it takes into account elements like temperature, sunlight, and other environmental effects that may affect the inverter&#;s performance throughout the day, weighted efficiency offers a more accurate evaluation.

Conclusion 

Although it is obvious that solar energy is sustainable, solar inverters are necessary to meet energy demands. These devices convert solar panel&#;s DC energy into AC power. There are three types of inverters; Off-Grid, On-Grid, and Hybrid classified based on their functions. 

Examining warranty coverage, operating temperature, and efficiency is necessary when selecting a solar inverter. The important factors to consider before purchasing the inverter are checking for warranties, which range from 5 to 25 years, and understanding their scope, which includes expenditures associated with interior and external damage as well as repairs. Operating temperature tolerance affects performance in difficult circumstances. Efficiency measurements that account for environmental factors, such as peak and weighted efficiency, evaluate an inverter&#;s performance.

Choosing a solar inverter1 is a crucial decision when setting up a solar power system. Ultimately the choice of a solar inverter should be based on your specific needs and it is advisable to consult with Solar Experts who can assess your site potential and recommend the best for your Solar power system. 

Check our solar projects now

 

Power Inverter Buying Guide - Tripp Lite - Eaton

An inverter tackles this disparity by increasing the voltage and using transistors or semiconductors to reverse the polarity of the DC input back and forth rapidly, sending it one way through the circuit, then very quickly reversing it and sending it the other way. In most cases, it does this 60 times per second (60 Hz).

The direct current, or DC, power that comes from a battery flows in one direction from the battery's negative terminal, through the completed circuit and back to the positive terminal of the battery. However, typical 12-volt or 24-volt batteries provide only relatively low-voltage power. Depending on your location, appliances need to run on 120-volt or 230-volt AC power.

Simply put, a power inverter delivers AC power when there's no outlet available or plugging into one is impractical. This could be in a car, truck, motorhome or boat, at a construction site, in an ambulance or EMS vehicle, at a campground or on a mobile medical cart in a hospital. Inverters or inverter/chargers can provide power for your home during an outage to keep refrigerators, freezers and sump pumps operating. Inverters also play an essential part in renewable energy systems.

An inverter/charger is a quiet alternative to gas generators, with no fumes, fuel or noise to deal with. During prolonged outages, you may need to run a generator occasionally to recharge the batteries, but the inverter/charger lets you run the generator less often, conserving fuel.

An inverter simply converts DC (battery) power into AC power and then passes it along to connected equipment. An inverter/charger does the same thing, except it is an inverter with batteries attached. It remains connected to an AC power source to continuously charge the attached batteries when AC utility power &#; also known as shore power &#; is available.

A power inverter is a device that converts low-voltage DC (direct current) power from a battery to standard household AC (alternating current) power. An Inverter allows you to operate electronics, household appliances, tools and other electrical equipment using the power produced by a car, truck or boat battery or renewable energy source, such as solar panels or wind turbines. An inverter gives you power when you are "off the grid" so you have portable power, whenever and wherever you need it.

Many devices, such as variable-speed power tools, ATMs, computers with active PFC power supplies, laser printers, networking equipment and audio/video components, require pure sine wave power. Stable, microprocessor-controlled sine wave power enables your equipment to run cooler, last longer and operate without malfunctions or reduced performance caused by substandard power. Eaton features several inverters that provide pure sine wave output .

Special medical-grade inverters provide safe and reliable mobile power for critical on-board ambulance/EMS equipment. Inverters used in medical vehicles should be UL 458 compliant. Eaton offers an inverter with an integrated charging system, designed for installation in ambulances/EMS vehicles. See Eaton's Ambulance/EMS Vehicle Inverter .

A medical-grade inverter can retrofit a mobile medical cart for use in a healthcare environment. The mobile power gives the doctor, nurse or technician freedom to bring treatment, monitoring or diagnostic equipment to the patient. Inverters for mobile medical carts should have hospital-grade outlets and be UL -1 compliant. See Eaton's selection of medical-grade inverters for hospital cart power .

Inverter/chargers designed for off-grid job sites and work trucks with limited access to shore power use batteries separate from a vehicle's main battery or outside the vehicle entirely. Many power tools, appliances and electronics used in industrial applications require brief bursts of power exceeding their continuous wattage ratings, either at startup, during use or both. Heavy-duty inverter/chargers temporarily provide extra output power to handle these peak surge demands without shutting down. See Eaton's PowerVerter APS Inverter/Chargers .

When an AC source like a generator or shore power is available, the inverter/charger passes power to your equipment and simultaneously charges the connected batteries. When disconnected from the power source, the inverter/charger automatically switches to battery power and your electronics and appliances continue to run uninterrupted. See our selection of inverter/chargers designed for RV and marine applications .

Don't leave the (electric) comforts of home behind when you're camping, boating or delivering goods over the road. For trucks, boats and recreational vehicles, a permanent-mount inverter/charger hardwired directly to the battery bank lets you run computers, tablets, TVs, coffee makers, blenders and other plug-in necessities.

The 12V cigarette lighter in a car or truck can be used with a small portable inverter to provide power to charge phones, tablets, laptops, DVD players, light tools and other devices. Portable inverters are an excellent choice for family road trips. These mobile inverters provide one or two AC outlets, plus select models also have two USB charging ports. Eaton's selection of compact portable inverters includes models up to 400W.

Look for an inverter or inverter/charger with a wattage capacity greater than the appliances you need to keep running. Refer to Table 2: Typical Wattage of Common Home Appliances below. Ready to buy your inverter/charger now? See our recommended inverter/chargers for emergency home backup power .

To create an emergency backup system without a vehicle, you can hook up two 12V car batteries to one inverter. That will provide enough power to run the average household refrigerator for up to two days, depending on the size of the batteries, the size of the fridge and how full it is. It's a smart idea to have a spare battery or two on hand in case the power failure exceeds your battery runtime.

Most often, emergency home backup power runs off a standard car battery, essentially turning your car into a generator. The car should be kept running while the inverter is in use to prevent the battery from becoming depleted. The inverter can still be used if the car is off, but this is not recommended for prolonged periods. If you do use the inverter without the engine running continuously, start your car up every hour and let it run for 10 minutes to recharge the battery.

Goto KINGSUN to know more.

If you need emergency home backup power because your home experiences power loss during thunderstorms, hurricanes or severe winter weather, an inverter/charger helps keep essential appliances running.

Power inverters come in different capacities, measured in wattage. Here are 12 key factors to consider when you buy an inverter:

Frequently Asked Questions

What is the difference between an inverter and an Uninterrupted Power Supply (UPS)?

Inverters and UPS systems both provide power from batteries in the absence of AC power. A UPS typically includes the battery and battery charger in one standalone unit. Batteries for an inverter are generally user-supplied.

A UPS system also can have communication with the equipment that it is powering, letting the equipment know that it is operating on standby, giving it shutdown warnings or communicating with the human in the loop. Inverters typically don't have this capability.

Depending on the inverter, it will respond to a power outage in 4.2 to 16.7 milliseconds. A UPS responds in a fraction of that time, making the UPS a better choice for applications that must remain powered, such as computer networking equipment.

What is the difference between an inverter and a generator?

A generator runs on gasoline, diesel fuel or propane to produce electric power. An inverter converts DC power stored in batteries to AC power needed to run tools, electronics, appliances and other devices.

A generator may be a better choice when large amounts of power are needed for prolonged periods. However, an inverter/charger is a cleaner and greener choice. It is quiet and fume-free, making it preferable for residential areas or for use indoors.

An inverter/charger can work along with generator power when the generator is running, allowing you to turn the generator off for periods of time to save fuel without turning off your equipment.

What is an inverter/charger?

An inverter/charger converts DC (battery) power into AC power and then passes it along to connected equipment. When it is connected to an AC power source, it continuously charges the attached batteries. During a power outage, the inverter/charger will automatically switch to battery power to provide power to connected equipment. The batteries will be recharged when the AC power source becomes available again.

How do I use an inverter for basic home emergency backup power?

Most often, emergency home backup power runs off a standard car battery, essentially turning your car into a generator. The car should be kept running while the inverter is in use to prevent the battery from becoming depleted. The inverter can still be used if the car is off, but this is not recommended for prolonged periods. If you do use the inverter without the engine running, start your car up every hour and let it run for about 10 minutes to recharge the battery.

To create an emergency backup system without a vehicle, you can hook up two 12V car batteries to one inverter. That will provide enough power to run the average household refrigerator for up to two days, depending on the size of the batteries and the size of your fridge. It's a smart idea to have a spare battery or two on hand in case the duration of the power failure exceeds your battery runtime.

Look for an inverter with a wattage capacity greater than the appliances you need to keep running. Refer to Table 2: Typical Wattage of Common Home Appliances below. Ready to buy? See our recommended inverter/chargers for emergency home backup power.

Can I power my home using my car and a power inverter?

Absolutely! First, know the total wattage of the appliances you need to keep running using the guidelines given below. This will help you buy the right inverter for your home emergency backup system.

An inverter is not waterproof, so keep it out of the rain, as well as away from dust and direct sunlight. Although you can connect the inverter to the vehicle's battery using jumper cables and alligator clips, the preferred method is with a ring terminal that fits securely over the inverter post. Then connect an extension cord no more than 200 ft. from the inverter to the appliance(s) you want to run. Beyond this distance, you are likely to experience signal loss.

To keep the battery charged, you should run your car for about 10 minutes every hour. The inverter will still work when the car is off, as long as you have not depleted the battery.

Does an inverter provide surge protection?

Yes. Because an inverter converts DC power to AC power, the AC output is conditioned before it reaches your equipment. The inverter provides stable output voltage and frequency to protect your equipment from power surges and line noise interference, allowing your equipment to perform at its peak.

Can an inverter power a refrigerator or freezer?

Yes, but there is an important point to keep in mind. When a refrigerator or freezer cycles on, it will draw a high start-up surge of power, several times the wattage it requires when running continuously. Make sure your inverter can handle the peak surge. As a rule of thumb, ensure your inverter can handle a peak surge of 500-750W for a refrigerator and 500-W for a chest freezer.

What kind of battery should I use with my inverter?

Most commonly, 12V batteries like the one in your car are used to power inverters. Heavy-duty inverter/chargers are available that use 24V, 36V or 48V batteries for applications requiring higher wattages. Make sure the batteries you choose match the input voltage capacity of your inverter.

Deep cycle batteries look like ordinary car batteries, but can provide sustained power over a longer period of time and run reliably until discharged up to 80%. They are ideal for inverter applications, especially in RVs, boats and off-the-grid renewable energy because of their ability to be almost completely discharged before they need to be recharged.

Along with batteries, you'll need a fuse and fuse holder. One of the easiest types of fuses to use is an "ANL" fuse that can be spliced into the positive wire coming from your battery pack.

What type of cable should I use to connect batteries?

Most inverters are sold without cables so the user can select the cable best for their application. In general, the distance between the battery and the inverter should as short as possible, ideally 10 ft. or less. Cables used for connecting inverters should be type SGX, which is the type of cable typically used to connect a battery to a car's electronic system and ground it.

The below recommended wire gauge table is a general rule of thumb. The actual size wire you need will vary based on the voltage of your battery, the total amps your equipment is drawing and the length of the cable. Our best advice is to stick to what is specified in your inverter's owner's manual.

Table 1: Recommend Wire Gauges

Inverter Continuous Wattage Recommended Wire Gauge < 500W8 AWG 500 - W4 AWG - W2 AWG - W1/0 AWG > W4/0 AWG

Is a pure sine wave inverter really important?

Depending on what equipment you're using the answer could be a resounding yes. A pure sine wave inverter produces a smooth, sinusoidal AC output with very low harmonic distortion. Sensitive electronics, variable-speed tools, medical equipment such as oxygen concentrators, TVs and A/V components, fluorescent lights with electronic ballasts and any appliances with microprocessor control will not run well under modified sine wave power.

What size power inverter do I need?

To know the right size inverter for your application, you need to total up the wattage of all the appliances, tools or electronics that will run off the inverter at the same time. Many appliances and power tools have their wattage rating indicated on a label on the product itself or in the item's owner's manual. If your devices indicate only amps, the wattage can be arrived at using this simple formula:

Volts x Amps = Watts

Example: You want to run a small mini fridge. You know from the product label it uses 0.7 amps. In the U.S., voltage is 120. Therefore:
120 x 0.7A = 84 Watts

Now factor in how long you want the device to run. This is its runtime. Assuming you are using 12V batteries, divide the total watts by 12.

In our mini fridge example:
84 ÷ 12 = 7 DC amps

This is the DC amp hours required to run the fridge for 1 hour, if it were to run continuously. You'll need to observe the fridge running for a period of time to determine how long it actively runs, so observe it for 15 minutes and record the length of time it runs.

Let's say you want the fridge to run for 12 hours before the batteries need to be recharged. Your observation shows the fridge runs for 5 minutes during the 15-minute observation period. Use this formula:

Active runtime required = Minutes Running ÷ Minutes Observed x Total Runtime Required
12 Hours = 5 Minutes ÷ 15 Minutes x 4 Hours

Next, multiply the DC amps required by the number of hours you estimate you can operate your fridge without charging the batteries.

7 DC Amps x 4 Hours = 28 Amp-Hours

Now you should factor in an adjustment for variable conditions that might affect how frequently the fridge runs, such as warmer weather, opening the fridge, etc. A good rough estimate is a factor of 1.2.

28 Amp-Hours x 1.2 = 33.6 Amp-Hours
This is the minimum amp-hours your batteries must supply.

How much wattage do common home appliances and tools use?

This table of common appliances, electronics and tools will help you estimate your needs. Be sure to check the product label for the actual wattage requirements, and remember that many tools and appliances have significantly higher peak surge requirements when they start up/cycle on.

Table 2: Typical Wattage of Common Home Appliances

Want more information on Hybrid Inverter Supplier? Feel free to contact us.

Device/Appliance Typical Wattage Desktop Computer with Monitor200 - 400W Laptop Computer20 - 75W Inkjet Printer15 - 75W Laser Printer500 - W Satellite Dish75W Gaming Console125W LCD TV, 32"50 - 70W LCD TV, 42"90 - 250W DVD Player40 - 50W Table Lamp with Incandescent Bulb60W Table Lamp with CFL Bulb13 - 15W Table Lamp with LED Bulb6 - 9W Fluorescent Tube Light40W Blender300 - W Toaster800 - W Coffee Maker, Drip550 - W Coffee Maker, Keurig200 - W Microwave Oven - W Mini Fridge350W Refrigerator, 15 cu ft.240W Chest Freezer 15 cu ft.180 - 500W Vacuum Cleaner300 - W Tabletop or Box Fan50 - 120W CPAP Machine200W Hair Dryer - W Flat Iron800 - W Sump Pump850 - W Space Heater - W Furnace Fan75 - 400W Electric Drill700W Electric Screwdriver60 - 300W Circular SawW Jig Saw350W

14

0

Comments

Please Join Us to post.

0/2000

All Comments ( 0 )

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)